

A Snapshot of Current Research in Learning Analytics

Using Real-Time Analytics in Lectures for Engagement To Boost Positive Student Outcomes

Jennifer Stokes

Course Coordinator:	Digital Literacy: Screen, Web & New Media						
	Future Ideas: Information and the Internet						
Content Developer:	Critical Approaches to Online Learning (UniSA Online)						
Member:	Society for Learning Analytics Research (SoLAR)						

How do we reach individual learners?

How do we make learning experiences engaging for all? How can we improve learning and teaching at university? I wish I could understand this...

I know how to do this easily.

No longer is education given to the students for recitation through a text and lecture style model. This generation is a collaborative and social generation that has a focus on understanding and building their knowledge through various forms of medium to discover the answers. It is for the educators to provide an arena for engagement and discovery as well as be a content expert and mentor (Monaco & Martin 2007, p. 46).

"While the use of average dimensions is generally unsatisfactory even when only one dimension is being considered at a time, the inadequacy of the "average man" method is compounded many times when more than one dimension is to be considered in a design problem" (Daniels 1952, p. 2).

Daniels highlights an insidious problem in design, namely if you design for an "average" person, not only are you designing for no one in particular, you are in fact, designing for no one at all' (Aguilar 2018, p. 39).

Not the *average* student.....

Why learning analytics?

- Personalised learning
- Timely feedback
- Early intervention (Reyes 2015)

'A meta-analysis of 225 studies researching active learning and academic performance found that active learning increases examination performance by half a grade (on average) and that lecturing increases failure rates by 55%' (Freeman et al. 2014 cited in Matthews, Garratt & Macdonald 2018, p. 7).

Supported by backend analytics from UniSA MOODLE site

Broader benefits....

Predicting student learning success and providing proactive feedback (Dawson et al. 2014 cited in Gašević, Dawson & Siemens 2015, p. 65).
Online and on campus engagement
Supporting students at risk
Improved cohort outcomes

Utilising big data, good design, and the input of stakeholders they are meant to serve, learning analytics techniques aim to develop applications for the sole purpose of reducing the classroom size to 1.... These digital innovations will enable us to finally do away with a model of education that teaches toward the non-existent average student, replacing it with one that is more socially just and equitable; one that acknowledges and supports the individual needs of every student (Aguilar 2018, p. 42).

Issues

- Access to technology
- Diversity
- Technology in place
- Educator attitude, university culture and culture of analytics
- Connection to research

Ethics

- 2014 data analysis and move to BYOD
- Raising awareness of analytics
- Issues of consent and data retention
- Privacy confidential or anonymous?

The Educator and Real-time Analytics

- Shift from 'sage on the stage' to a discursive lecture
- Inclusive and adaptable in practice and pedagogy
- Learning, testing and embedding new technology takes time and persistence
- Navigating new technology for students in supportive ways
- Encouraging interactivity through digital media
- Creating a supportive learning environment
- Modelling positive behaviour with technology

What to do if the technology fails?

Implementing real-time analytics (diagram by Stokes 2018)

(U)

Example 1: Student engagement

My Courses > Digital Literacy: Screen, Web and New Media > L7 Learn new skills fast 2018 - Virtual lecture > Session 31835692

•

Jump to ▼ 1 2 3 4 5 6 7 8 9

1. word cloud What is your favourite recent meme?

9. word cloud

This picture denotes a rose. What connotations can you think of?

B. Old woman

Round 1 € 52 responses

7 get it now × 0 still don't get it

×

Example 2: Knowledge development

My Courses > Digital Literacy: Screen, Web and New Media > L6 Creativity, idea generation and the pitch - Virtual lecture 2018 MASTER > Session 20867696

I Download results ▲ Attendance information Messages I Resend grades X Delete data

•	Jump to V	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
10. multip	ble choice	na ei	vecut	tive Δ	lev ()sho	rne r	opul	arise	2										F	Roun	id 1 respor	1ses, 60	% correc
A. Brain	nstorming	ng c,	local					opu	anoc												A. 6	0%		
B. Anale C. Mner	ogy monic device																				B. 5	%		
D. Brute	e search																				C. 2	0%		
E. Pers	pective shift																				D. 1	0%		
																				ſ	E. 5	%		

7. multiple choice

58 responses, 7	6% correct
A. 76%	
B. 0%	
C. 2%	
D. 0%	
E. 22%	

✓ 4 get it now × 0 still don't get it

×

Ceci n'est pas une pipe.

Why is this picture important?

- A. It reminds us that the sign is not the referent, which is fundamental to understanding semiotics.
- B. It reminds us that smoking is cool, which is a good life lesson.
- C. Magritte was a well-known surrealist who confused audiences with confronting art.
- D. It is classy because it is French.
- E. It makes us consider semiotics by looking at connotations.

University of South Australia

5. sketch

Using only FOUR lines you must connect ALL of these dots.

You CANNOT pick up your drawing tool (pen, crayon, map pencil, etc!)

Only one dot will be touched more than once. (Braingle 2014) Answer

(Note: The order shown can be reversed, and you can start in any corner, using the same pattern.) (Braingle 2014)

×

Example 3: Educator praxis

- Reflect on data
 - In lecture
 - In combination with MOODLE
 - Student progression
 - Students-at-risk
 - After each delivery

'Using technology helped me to engage more, especially with learning catalytics.'

'Learning catalytics was especially helpful because it helped to keep me engaged during long lectures.' 2018 INFS 1022 Student survey

• Continued improvement, with a caveat: 'As a comparable analogy to teaching to the test, rather than teaching to improve understanding, learning analytics that do not promote effective learning and teaching are susceptible to the use of trial measures such as increased number of log-ins into an LMS, as a way to evaluate learning progression' (Gašević, Dawson & Siemens 2015, p. 69).

Outcomes

- Enhancing participation and engagement
- Enthusiastic student response
- Above average retention and pass rate
- Outstanding course evaluations (SP2 Student satisfaction with Jenny's teaching 81.94 (from -100 to +100)

.....what do the students think of two hour interactive lectures?

- ✓ Lectures were great fun.
- ✓ She was very entertaining, her lectures made me want to listen.
- ✓ The multimedia style of the lecture is a fun and interesting way to learn.
- ✓ The content and presentation of the course were highly engaging and often fascinating.
- ✓ Overall, the course was wonderfully presented and proved to be one of the most engaging lectures of the study period.
- Very in sync with today's technology and able to express her enthusiasm for the course. Jennifer has made this course interesting as well as challenging. The interactive learning every week via the learn online site is particularly helpful and worked well. The topic is also very well covered and does not feel rushed.
- 2 hours is very long, even with a break. I often found my concentration drifting in the last half an hour or so. I would have preferred if lectures were 1.5 hours with no breaks.
 MyCourseExperience 2018

Three key points

When implemented effectively, real-time learning analytics enhance learning and teaching.

- 1. Learning and teaching at university must engage with cohort needs in order to best engage and support students. A shift toward interactive practice and rapid feedback has become necessary to support Millennial and Gen Z students.
- 2. There are clear benefits for all students when real-time learning analytics are embedded into lectures and other formats. These include increased student engagement, understanding, and positive learning outcomes.
- 3. Strategic use of real-time analytics allows educators to better support individual needs. Through employing learning analytics effectively, educators are better able to deliver personalised learning experiences and target early interventions for greater student success (Reyes 2015). This is particularly important for meeting the needs of students from diverse backgrounds (Aguilar 2018).

Questions? Jennifer.stokes@unisa.edu.au

References

- Aguilar, SJ 2018, 'Learning Analytics: at the Nexus of Big Data, Digital Innovation, and Social Justice in Education', *TechTrends*, vol. 62, no. 1, pp. 37-45.
- Biggs, J & Tang, C 2011, *Teaching for quality learning at university*, 4th edn, Open University Press, Maidenhead.
- Gašević, D, Dawson, S & Siemens, G 2015, 'Let's not forget: Learning analytics are about learning' *TechTrends*, vol. 59, no. 1, pp. 64-71.
- Matthews, KE, Garratt, C & Mcdonald, D 2018, *The higher education landscape: Trends and Implication. Discussion paper*, The University of Queensland, Brisbane.
- Monaco, MJ & Martin, M 2007, 'The millennial student: A new generation of learners', *Athletic Training Education Journal*, vol. 2, pp. 42-46.
- Reyes, JA 2015, 'The skinny on big data in education: Learning analytics simplified', TechTrends, vol. 59, no. 2, pp. 75-79.
- Sclater, N, Peasgood, A & Mullan, J 2016, 'Learning analytics in higher education', *Jisc*, Bristol, viewed 1st June 2018, < https://www.jisc.ac.uk/reports/learning-analytics-in-higher-education >.
- University of South Australia 2015 2018 *Student surveys*, UniSA, Australia.
- Images from iStock, Kahoot, Learning Catalytics, Padlet, UniSA and Unsplash. Media images used for educational purposes.

University of South Australia

MOOC Discussions with Machine Learning

University of Auckland | New Zealand

Yuanyuan Hu

MOOC Discussions

Cognitive levels?

Interactions ?

Yuanyuan Hu University of Auckland | New Zealand

Classification with Supervised Learning

Known categories **Pre-classified** data Text —> Numbers

Training data Testing data

Yuanyuan Hu University of Auckland | New Zealand

Training

Known X —> -> known Y Model -> Predicted Y X ->

Classification with Supervised Learning

bag of words

Clustering with Unsupervised Learning

Unknown categories **No Pre-classified data** Text —> Numbers

Yuanyuan Hu University of Auckland | New Zealand

Clusters results 11 8 7

Cognitive levels

Revised Bloom's Taxonomy

Remember

Understand

Apply

Yuanyuan Hu University of Auckland | New Zealand

Cognitive levels

	Remember	Under	stand	Apply	Analy	/ze	Evaluate	Create
	Retrieve relevant	Construct mea	ning by	Use a procedure to	Break material	into its	Make judgments	Put elements
	knowledge from	connecting "ne	ew" to	perform exercises	constituent par	rts and	based on criteria	together to form
	long-term memory	"prior" knowl	edge	or solve problems	relate parts to	whole	or standards	a coherent whole
	Remember	Understand	Interpret	Apply	Differentiate	Analyze	Evaluate	Create
	Recognize	Clarify	Paraphrase	Execute	Discriminate	Focus	Check	Generate
	Identify	Illustrate	Classify	Carry out	Distinguish	Select	Coordinate	Hypothesize
BS	Recall	Categorize	Summarize	Use	Organize	Outline	Detect	Plan
/EF	Retrieve	Generalize	Infer	Implement	Integrate		Monitor	Design
		Conclude	Explain		Structure		Test	Produce
		Predict	Compare		Attribute		Critique	Construct
		Contrast	Map		Deconstruct		Judge	
	What happened	How would ye	ou explain	How would you	What was the	turning	Is there a better	What are possible
	after	Who do you th	nink	solve	point?	-	solution to	solutions to
Ž	How many	Why did		How would you	How is simi	lar to	What do you	How would you
E E	What is	How would ye	ou graph	do	Why did occ	ur	think about	design an
ES	Who did	Which corres	sponds to	What would you	What is needed	d to	and why?	What would
DC	Where did occur?	What are exam	ples of	say to	What were sor	ne of the	Do you think is	happen if
\sim		How could yo	u group	How would you	motives for		a good thing	How many ways
				work a case of			and why?	can you
	Make a list	Write a summ	ary of	Solve a problem	Write a biogra	phy	Conduct a debate	Design an
S	showing	Prepare a flow	chart of	Write a response	Make a map sł	nowing	(or a mock trial)	experiment
IE	Make a time line	Write an expla	nation of	to a case study	interrelation	nships	Write a critique	Create a new
LI/	Make a chart	Make a taxono	omy of	Perform a lab	Write an analy	vsis of	Prepare a case	product
II	showing	Draw a map/n	nodel of	experiment	Write an essay	,	Write an opinion	Plan a marketing
AC		Draw a graph	of		examining h	bias in	piece	campaign
-		Write possible	outcomes of		Construct a ch	art to		Create art
		Retell an event	t		organize rel	lated data		Design a building

Cognitive levels

Testing data sample 2016 comments 5238

Jupyter bloom's taxonomy2016 Last Checkpoint: 10 minutes ago (autosaved)												
File	Edit	Viev	v Insert	Cell	Kernel	Widgets	Help					
B +	8	2	▶ ♦	N Ru	n 🔳 C 🕨	Code	•					
		1	find	55.0	explanation	29	used	145.0	compared	11.0	relationships	21.
		2	finding	20.0	example	19	using	84.0	structured	6.0	check	11.0
		3	shows	17.0	examples	15	skills	8.0	comparing	6.0	relationship	8.
		4	show	11.0	understanding	14	experiments	5.0	structure	5.0	checked	5.
		5	remember	10.0	explanations	14	skill	4.0	compare	5.0	tests	4.(
		6	call	8.0	explained	14	application	3.0	organized	4.0	testing	3.
		7	called	7.0	summary	13	apply	3.0	survey	3.0	estimate	3.
		8	choose	7.0	groups	13	solve	3.0	assume	3.0	recommend	2.
		9	define	5.0	understood	12	develop	3.0	differ	2.0	monitoring	2.
		10	identify	5.0	group	12	experiment	3.0	assuming	2.0	recommended	2.
		11	chose	4.0	categories	12	solving	2.0	divided	2.0	monitor	2.
		12	showed	4.0	explain	10	applied	2.0	organise	2.0	measure	2.
		13	identifying	3.0	illustrated	8	applying	2.0	distinguished	2.0	influence	2.
		14	list	3.0	compare	5	built	2.0	organised	1.0	estimated	1.(
		15	recognise	2.0	illustration	5	developing	2.0	functions	1.0	measures	1.0
		16	showing	2.0	explaining	4	applies	1.0	outlines	1.0	judge	1.(
		17	choice	2.0	clarifying	4	builds	1.0	simplified	1.0	perception	1.0
		18	definition	2.0	clarification	4	solved	1.0	motivated	1.0	justified	1.(
		19	label	2.0	conclusion	4	utilized	1.0	examine	1.0	estimates	1.
		20	identification	1.0	category	2	experimented	1.0	motivate	1.0	checking	1.
		21	match	1.0	demonstrating	2	establish	1.0	assumption	1.0	NaN	Nat
		22	recognising	1.0	illustrate	2	applications	1.0	motivation	1.0	NaN	Nat
		23	remembered	1.0	summarizing	2	NaN	NaN	outline	1.0	NaN	Nat
		24	recall	1.0	extends	1	NaN	NaN	theme	1.0	NaN	Nat
		25	defining	1.0	extended	1	NaN	NaN	dividing	1.0	NaN	Nat
		26	identified	1.0	illustrating	1	NaN	NaN	simplify	1.0	NaN	Nat

3.0 .0 hypothesis 1.0 combine 1.0 produce 1.0 predicted NaN NaN

Advantages and Disadvantages

Next and Values

Analysing sentences structures Supervised learning Unsupervised learning interactions social roles

Communities in large MOOC courses **Connect similar topics** Understand learning gains

University of Auckland | New Zealand

Yuanyuan Hu

PhD Presentation

Learning Analytics implementations in Australian universities: towards a model of success

Jo-Anne Clark Griffith University School of Information and Communication Technology

Principal supervisors: Dr David Tuffley & Dr Rene Hexel **Associate Supervisor**: Professor Mark Brimble

Background to Research Problem

- Growing accountability for Universities to deliver quality outcomes, improved learning and student success (Arnold, 2010; Dietz-Uhler & Hurn, 2013; Campbell, Deblois & Oblinger, 2007; Oblinger & Campbell, 2007).
- The regulatory environment is likewise becoming tighter, with increasing scrutiny by governments, accrediting agencies and students (Universities Australia, 2013)
- Data-driven decisions are needed, thus Learning Analytics (LA) are introduced (Siemens, 2010: Oblinger, 2012)
- To improve student success, the success of LA system implementations must be examined.
- Learning analytics in this study, is the collection, analysis, and reporting of data associated with student learning behaviour (Lockyer, Heathcote & Dawson, 2013)

Information Systems Success

- The Delone & McLean model has tested reliably over time, having been extensively used to gauge information systems success since its conception in 1992 (Delone & McLean, 2003).
- This study, rather than validate the model, uses a qualitative approach to describe information systems success in terms of LA implementations. The research will describe the success of LA implementations as experienced by staff members working with those systems.

Delone & McLean Model of IS Success

DeLone, W.H. and McLean, E.R. (2003), 'The DeLone and McLean model of information systems success: A ten-year update', Journal of Management Information Systems, vol. 19 no. 4, pp. 9-30

Research Design

- Qualitative Research allows the researcher to conduct in-depth studies about a broad range of topics. Enables researcher to capture the meaning of real-world events from the perspective of a study's participants (Yin, 2011). Qualitative use of DeLone & McLean's (2003) model of Information Systems Success.
- Interpretive Paradigm the world will be viewed as a social construction of reality, interpreted and experienced by people and their interactions within the wider social system (Klein & Myers, 1999).
- **Case study research** as "an empirical inquiry that investigates a contemporary phenomenon within its real-life context; when the boundaries between phenomenon and context are not clearly evident" (Yin, 1984: 13).

Progress to date

Planned

Stage one

- 43 Australian Universities invited to take part
- Intend to interview approximately 3-4 people per institution.

Stage two

 Survey deployment – staff at 43 Universities

Progress

Stage one

'State of play' of LA at Australian Universities

- Key staff from 3 universities have been interviewed so far
 - > Staff work directly with LA
 - Research has found that 3-4 staff work directly with LA

Stage two

Deployment of Delone & McLean (modified) survey

Key staff from 43 universities

Preliminary findings – key themes

- Different definitions of LA exist importance of defining LA
 - Student-facing
 - Academic facing
- University entry options e.g. Universities have unique cohorts
- LA implementation at Universities is still in its infancy
- Predictive modeling is a popular method
- Recommender systems being used
- Learning analytics examples applied to course design
- Tools differ e.g. Tableau software used in one case study

Preliminary findings – key themes cont.

Benefits of using LA

- Increased data literacy of staff
- Evidence based practice
- Data driven decision making
- Finding out what drives learning and what does not
- De-privatising the classroom (can be an uncomfortable conversation Increasing accountability)
- Limitations/challenges of using LA
 - All the cautions of being on the web (security issues, etc.)
 - Uninformed inferences just because someone is logged on to a LMS doesn't mean they
 are engaged in the course material "It is like mistaking the leaves for the wind. Measuring
 the movement of the leaves but the wind is something different."

Questions?

An investigation into Australian higher education teachers' interpretation of learning analytics and its impact on practice

DAVID FULCHER

UNIVERSITY OF WOLLONGONG AUSTRALIA

- Primary school teaching
- Business intelligence
- The UOW approach to learning analytics

Learning Analytics A VARIETY OF APPLICATIONS

Learning Analytics

Different approaches required ONE SIZE DOES NOT FIT ALL

- Gašević, D., et al. (2016). "Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success." <u>The Internet and Higher Education 28:</u>
 <u>68-84.</u>
 - Application: Early alert and academic success
 - Scope: Institution-wide
 - Findings: Different use of LMS features require consideration

Learning Analytics and Learning Design THE STUDENT SUCCESS PARADIGM

- Rienties, B., et al. (2017). "A review of ten years of implementation and research in aligning learning design with learning analytics at the Open University UK." <u>Interaction</u> <u>Design and Architecture (s) 33: 134–154.</u>
 - Application: Relationship between learning design and student behaviour and outcomes
 - Scope: Institution-wide
 - Findings: Learning design decisions impact student behaviours and partially impact student outcomes

- What factors influence Australian higher education teachers' interpretation of learning analytics?
 - What knowledge do Australian higher education teachers have about learning analytics?
 - How are learning analytics actually used by Australian higher education teachers?
 - What is difficult/easy about using learning analytics for Australian higher education teachers?
 - What information do Australian higher education teachers seek when making learning decision decisions?

