In this paper we report on some of the findings from a CUTSD project which was designed to find ways of promoting reflexive practice amongst engineering undergraduates. The project was one response to calls from within the profession of engineering and a review of engineering education for changes to engineering practice. Some of the desired changes included demands for engineers to be better communicators, better team workers and to have a greater sense of social and environmental responsibility. Much current engineering education and practice emphasises technical competence only. The challenge has been to find ways of ensuring technical competence with a greater awareness of contexts of practice, and we proposed that the incorporation of reflexive skills into engineering education would be one way of producing "the new engineer". As it turns out, this strategy has extensive implications for the "old engineer" also.One of the basic tenets of reflexive practice is that one must learn to identify and question presuppositions (starting assumptions). But part of what we do as University teachers is to socialise our students to the norms of the discipline, whatever that may be. We have found this matter of learning and practicing what could be called hegemonic behaviours to be particularly salient for engineers, but suspect it is significant in all disciplines. We are interested in the extent to which reflexivity can be expected of neophytes and how and when to introduce it but we are also interested in the effects reflexive practice has on practitioners. It has become clear to us that the changing contexts that require a new kind of engineer, also require a new kind of engineering educator. Teachers, as well as students, must learn new skills.
In the case of engineering, the dominant meanings and values that maintain the practices of the discipline include: positivist approaches to knowledge and sets of values such as a high degree of individual competitiveness; the valuing of long work hours for their own sake; and the sacrifice of other aspects of self and life to the professional identity (Downey and Lucena 1997). The typical engineer is reported (Beder 1998) to be concerned with order and certainty and therefore to be averse to ambiguity, to have a rather narrow range of interests, to be not given to introspection and not much interested in people. These are all traits that militate against the development of the reflective professional self. There is evidence that such cultural factors are also common in the sciences (Seymour and Hewitt 1997).
And yet for many years now reviews of engineering and engineering education around the world have called for engineers to rise to the challenge of a global environment characterised by rapid social, environmental and technological change (Morgan, Reid and Wulf 1998). That is, the modern engineer is asked to deal with ambiguous and changing circumstances and in a social and environmental context. The most recent such report in Australia has been a combined review by the Institution of Engineers, Australia, and the Engineering Deans (1996). They called the document, Changing the Culture: Engineering Education into the Future and they concluded that in order to rise to this challenge engineering educators should equip their graduates, in addition to technical competencies, with:
In an oft-quoted development of the loop metaphor, Argyris (1993) distinguishes between single-loop learning and double-loop learning. Single loop learning occurs when "an error is detected and corrected without questioning or altering the underlying values of the system", whereas double loop learning occurs when errors "are corrected by first examining and altering the governing variables and then the actions". While this is certainly necessary as a first step to a true improvement of practice, rather than just local adjustment, all too often the engineer will translate this dictum in purely technical terms. Thus, students in our project very often identified the governing variables as solely technical ones, ignoring social and contextual aspects of practice such as the difficulties they had experienced in group work or their inability to seek help with their problems.
Schön (1983) also sees the learner as engaging in experience, reflection, restructuring and planning. However, he advances the notion of reflection by distinguishing between reflection-in-action and reflection-on-action. Best known for his use of the term 'the reflective practitioner', Schön postulates that our knowing is in our action, and that such knowledge is tacit. When reflecting-in-action, "There is some puzzling phenomenon with which the individual is trying to deal. As he [sic] tries to make sense of it, he also reflects on the understandings which have been implicit in his action, understandings which he surfaces, criticises, restructures, and embodies in further action". Note once again that the discussion is of action, and can easily be translated to a problem-focus rather than a self-focus.
John Cowan (1997) extended Schön's work to encompass a third reflective loop: reflection-for-action. Reflection-for-action is anticipative: here the learner "defin[es] their aspirations...[and]...establishes priorities for subsequent learning".
Figure 1: Cowan's (1997) "loopy diagram".
While Schön tends to use the terms 'reflection' and 'reflexive thinking' interchangeably, Darling (1998:4) uses the time at which introspection occurs to distinguish between the two: reflection occurs after an interaction whereas, like Cowan's model, reflexive processes incorporate introspection within the period of interaction. Darling (1998:3-4) further elaborates that reflection is related to self and improving future practice whereas reflexivity is a pro-active tool to simultaneously improve communication and provide insight into priorities prior to reaction. Reflexivity can therefore be seen as the application of the fruits of reflection, and a higher order skill. Our projects aim to use techniques for reflective thinking in order to develop truly reflexive practice in engineers. That is, we seek to incorporate reflection into the being of the engineer, to make it the centre of a practice that will allow for life-long responsiveness to real world circumstances, to other people and to change. In comparison with Cowan's loopy diagram our ideal focuses not on experience, as something outside the person, but on the person's attitude to experience:
Figure 2: Reflexivity centres on the engineer, not their experience
Student cohort | n | Learning context | Reflexive tools |
First-year | 200 | Team project | Process observation, concept mapping |
Third-year (Mech eng) | 240 | Individual design project | Log/journal, critical incident analyses |
Fourth-years (Mech Eng) | 50 | Capstone team design | Essay/paper |
Fourth-years (Mfg and Mat) | 25 | Capstone team design | Log/journal, critical incident analyses |
Fourth-years (Chem Eng) | 65 | Capstone team design | Log/journal, critical incident analyses |
Although we had emphasised that critical incidents might be positive rather than negative, only seven of the ninety-four were positive. In either case, the students overwhelmingly identified issues such as communication, time management, group organisation and the assigning of group roles. These issues were often interrelated. For instance, one group noted that once they got around to assigning group roles they were able to communicate with each other better, and stay on track. A common problem related to groups' definition of the problem. Either they tried to tackle everything at once, get overwhelmed and waste time, or they focussed too narrowly on the first solution they thought of, without discussing alternatives. They also often realised that they had not made good use of the sources of information available to them, including the library, experts of various kinds and peers. This seemed to us to indicate a certain level of reflection had indeed been achieved by these students, according to Tripp's (1993) breakdown of critical incident analyses, namely:
We realised that in order for students to be able to learn and perform the role of "process observer", they would need modelling and guidance from their teachers. But most of the teachers (final year students, postgraduate students and engineering academics) had little idea how to proceed either. Training sessions were run to try to overcome this problem but their effectiveness was limited by the hegemony of "real engineering". There were two attitudes evident in those who came to the training sessions. One was that this was all beside the point, just "touchy-feelly" stuff, outside the scope of what engineers ought to be concerned with, which was calculation and deadlines. Other staff (the majority) came in good faith, acknowledging the demands of the various reviews of engineering education and the demands of industry. Many in this group appeared to lack confidence in their own ability to understand and model the desired behaviours. In class they were easily daunted when problems arose in group processes and, though willing, often failed to model enthusiastic engagement with the human dimension of engineering.
Of course, it would be easy to argue that we just need to keep improving the training of the teachers and there will be a gradual trickle down effect. If only we can provide the right reflexive tools, in time the engineering hegemony will be changed to value good communication and team skills, close attention to the social and environmental contexts of practice and so, on equally with technical expertise. We support that course of action, but are pessimistic about its ability to bring about substantial change in less than geological time. As well as concentrating on the practice of those just being socialised to the discipline and their teachers, we believe that a change is needed that can only be led by the most expert practitioners. Our rationale appears in the next section.
It would be relatively easy to set out a teaching program for the early years, abstracting rules for journal writing, reflection and so on, but practical and theoretical problems remain. The practical one is the problem that those who are expert in one set of practices may well be novices in another, and students need to have desired outcomes modelled to them by those inside the profession. This requires teachers to share their engineering expert status with students in a setting where they are equally novice in reflecting on it and coming to reflexive conclusions. The more serious problem is that just applying a set of rules for reflection will not result in reflexivity, the changing of attitudes and orientation to the social practice of engineering. Students must be brought to believe, as those in the profession who call for change believe, that better engineering outcomes should and can be obtained. What this means is that the path to reflexivity must start at the bottom of the table with today's experts using reflection on their practice, in partnership with students, to move towards a reflexive stance with respect to the world of engineering practice.
Stage | Characteristics | Strategy |
Novice | No experience Sticks strictly to rules Unable to decide which tasks most relevant |
Limit expectations until experienced gained Clarify rules Provide clear rule statements Reward rule use |
Advanced beginner | Low level unsupervised performance Belief in single solution Ask for answers Unwilling to explore problems |
Help prioritising; Support understanding of context Teach prioritising Present problems in context Reward risk-taking |
Competent | Can analyse complex problems Uses conscious, thoughtful, analytic reflection Conscious planning Lacks speed and flexibility of higher levels | Involve in decision making and planning Move away from emphasis on detail Demand more self-government of students Reward innovation |
Proficient | Intuitive response to "big picture" Uses experience of 'typical' events Considers fewer options than competent person | Draw publicly on experience in context of actual problem Avoid insistence on rules; Avoid extreme novelty Train tutors to call on experience Don't ask them to tutor where no experience exists |
Expert | Acts "by instinct" Is unaware of rules | Document both successful and unsuccessful interventions to bring expertise into conscious knowledge Involve instructors in reflection on their own practice |
There are two ways in which we see this happening. One is through experts within the academy reflecting on their expertise with students and junior colleagues, including tutors. For complete integration it would be good to see this begin in curriculum review, using a process such as the following:
It is important to remember that engineering tasks in the real world as well as in the class will include aspects where students have some expertise. Even first year students have experience of the world which informs their basic presuppositions about engineering and which needs to be made conscious. It is therefore never too early to begin incorporating reflexivity into the curriculum, and the developmental model should not be made an excuse for clinging to a teaching program that seeks to impart rules only at any level. Nor is it ever too late to change professional practice. Old-fashioned technical expertise is still vital, and adopting reflexive habits with respect to it promises to make it even more effective in a changing but still material world.
Beder, S. (1998). The New Engineer. South Yarra: Macmillan.
Benner, P. (1984). From Novice to Expert. Menlo Park CA, Addison-Wesley.
Boud, P., Keogh, R & Walker, D. (1985). What is reflection in learning? In Boud, P., Keogh, R. & Walker, D. (Eds), Reflection: Turning experience into learning, pp. 7-17. Kogan Page, London.
Butler, J. (1996). Professional Development: Practice as text, reflection as process and self as locus. Australian Journal of Education, 40(3), 265-283.
Cowan, J. (1997). Stockholm Pre-conference Workshop, Teaching science for tertiary students II: Learning how to think like an engineer. Stockholm, June 1997.
Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. Heath, Boston.
Downey, G.L and J.C. Lucena (1997). Engineering selves: Hiring in to a contested field of education, pp.117-141. In G.L. Downey and J. Dumit (Eds), Cyborgs and Citadels. School of American Research Press, Santa Fe, New Mexico.
Institution of Engineers, Australia (1996). Changing the Culture: Engineering Education into the Future. Institution of Engineers, Australia.
Institution of Engineers, Australia (IEAust) (1997). Manual for the accreditation of professional engineering courses. Institution of Engineers Australia, Australia.
Jolly, L., Radcliffe, D. and McLeod-Palma, A. (1999). Developing reflexivity in undergraduate engineers. Proceedings of 11th Annual Conference and Convention Australasian Association for Engineering Education, Adelaide, Australia, 26-29 September, 1999.
Jolly, L. and Radcliffe, D. (2000). Strategies for Developing Reflexive Habits in Students. Proceedings of American Society for Engineering Education Annual Conference, St Louis, June, 2000.
Knauft, B. (1996). Genealogies for the Present in Cultural Anthropology. Routledge, New York.
Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Prentice-Hall, Englewood Cliffs.
Morgan, R.P., Reid, P.P., and Wulf, W.A. (1998). The changing nature of engineering. ASEE Prism, (5), 12-17.
Schön, D. (1983). The reflective practitioner. Basic Books, New York.
Seymour, E. and N.M. Hewitt (1997). Talking About Leaving: Why undergraduates leave the sciences. Westview Press, Boulder, Colorado.
Tripp, D. (1993). Critical incidents in teaching: Developing professional judgement. Routledge, London.
Williams, R. (1977). Marxism and Literature. Oxford University Press, Oxford.
Contact details: Lesley Jolly, University of Queensland Phone (07) 3381 1506 Fax (07) 3381 1523 Email l.jolly@mailbox.uq.edu.au Please cite as: Jolly, L. and Radcliffe, D. (2001). Reflexivity and hegemony: Changing engineers. In L. Richardson and J. Lidstone (Eds), Flexible Learning for a Flexible Society, 357-365. Proceedings of ASET-HERDSA 2000 Conference, Toowoomba, Qld, 2-5 July 2000. ASET and HERDSA. http://www.aset.org.au/confs/aset-herdsa2000/procs/jolly2.html |