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Introduction 
 
When creating an interactive simulation specifically geared towards the achieving 
of learning objectives, there are a number of interface design options that need to 
be chosen carefully.  Frequently these decisions are made ‘intuitively’ by 
designers who resort to the traditional guidelines of ‘direct manipulation’, without 
adequate consideration of how overall cognitive processes may be affected.  
Results of several studies have indicated that, to the contrary, interfaces that are 
less ‘user-friendly’ may, in some instances, be more conducive to concept 
learning. 
 
This paper examines such research and associated theory.  Major features of a 
simulation-learning environment are examined systematically, and, in each case, 
implications for design are discussed and summarized.  The framework used is 
one that places the interface at the centre of interactive learning, mediating as an 
information flow portal between human cognition and a programmed model.  
Variations in the directness of manipulation and timing of feedback are 
highlighted as vital parameters, and, in concluding, a call is made for further 
research to elicit the effects of such changes specifically on concept acquisition.  
 
 

Briefly: Simulation and Interaction 
 

“For better or worse, simulation is no mere fad. Indeed, to think of 
simulation games as mere entertainment or even as teaching tools 
is to underestimate them. They represent a major addition to the 
intellectual repertoire that will increasingly shape how we 
communicate ideas and think through problems.” (Starr, 1994) 

 
Since the popular adoption of the PC for educational and recreational purposes, 
the terms ‘simulation’ and ‘interaction’ have attributed numerous and diverse 
meanings and have often been used in contexts indicating beneficial uses of the 
new technology.  When thinking about simulations, people reflexively cite 
examples such as Simcity (Maxis, 1989) and Microsoft Flight Simulator 
(Microsoft, 2000). 



 
In computer-based learning any system can be simulated, providing that its 
relevant attributes can be expressed in terms of an algorithmic model.  The 
system being modelled may be derived from the ‘real-world’ or based primarily 
on fantasy.  Generally, in the educational setting, attributes of physical, social, 
economic and political domains are replicated in simulation models.  For the 
purposes of this discussion, the following definition will be used: 
 
A simulation is a modelled interactive environment that reflects particular 
attributes of another system. 
 
The term ‘interactive’, by virtue of its literal definition: ‘mutually or reciprocally 
active’ (Webster's, 2001), has been widely used in sales pitches to describe 
software ranging from simple productivity tools to large multimedia 
encyclopaedias.  For applications dedicated to learning, this broad, somewhat 
jingoistic definition has proven to be totally deficient, and as a result, several 
taxonomies have been formulated in an attempt to afford pedagogical 
significance to aspects of interaction.  Whether deep or surface learning occurs 
with user's involvement with an application, was addressed by Jonassen (1988) 
in framing his five levels of interaction.  The learner’s mental engagement was 
identified as being crucial within three dimensions of interactivity, classified as 
‘Levels’, ‘Functions’ and ‘Transactions’ (Schwier & Misanchuk, 1993).  More 
recently, this mental engagement, has been considered in conjunction with the 
learner’s ability to manipulate and navigate through the environment, with calls 
for greater attention to be paid to the design of context-based interaction (Sims, 
1997). 
 
The ubiquitous presence of game consoles bears testimony to the popular 
appeal and acceptance of the simulation as a vehicle for learning and 
entertainment.  The efficacy of adopting simulators in education and training has 
been well studied (Carlsen & Andre, 1992; Randel, Morris, Wetzel, & Whitehill, 
1992; White, 1993), and although it is not strongly conclusive whether concept 
learning is improved by the use of simulators as compared to traditional methods, 
there certainly does not appear to be evidence to the contrary.  
 

“Simulated experiences have the potential to become powerful 
instruments of cognition.  They support both experiential and 
reflective processes: experiential because one can simply sit back 
and experience the sights, sounds, and motion; reflective because 
simulators make possible experimentation with and study of actions 
that would be too expensive to try in real life.” (Norman, 1993) 

 
On a cognitive level, sensory input (usually visual, auditory or haptic) is 
frequently updated in response to user initiated-commands.  This results in a 
feedback loop that is controlled and guided by the learner, through which they 
are able to observe changes, make inferences, and test emerging ideas about 



the model in question.  Pedagogically, the process appears ideal, however, 
concerns remain.  
 

“Tim's approach to ‘SimLife’ is highly functional. He says he learned 
his style of play from video games... Tim is able to act on an 
intuitive sense of what will work without understanding the rules 
that underlie the game's behavior. His response to ‘SimLife’—
comfort at play, without much understanding of the model that 
underlies the game—is precisely why educators worry that students 
may not be learning much when they use learning software.” 
(Turkle, 1997) 

 
What is essentially suggested here is that computerized models can be so 
complex that the user has little to no hope of understanding the relationships 
between key underlying attributes.  The ‘black box’ concept (Starr, 1994) of the 
algorithm controlling the simulation, has been the cause of much concern, where 
users are unable to query or debate crucial assumptions forming the basis of the 
program.  This criticism highlights the point that designing for educational impact 
requires the consideration of several layers, from the algorithm to the interface, to 
the nature of the learning task itself. 
 
A model that defines these layers as well as represents their juxtaposition in an 
interactive environment is the essential starting point for any systematic design 
process. 
 
 

A ‘Conveyor’ model 
 
Represented in the diagram below is a model where the interface assumes a 
central position, with the human and program at opposing poles. 
 
 
 

 
 

Diagram1: Conveyor model overview 
 



 
Beginning the process at the section representing human input, the learner 
usually sees or hears a stimulus from the interface – this undergoes integration in 
a cognitive process – the resultant is an output such as a planned course of 
action – and so certain elements of the interface are manipulated – resulting in 
the definition of the inputs for the underlying program – which are then processed 
by program algorithms defining the model – creating output data – that the 
interface represents as feedback to the user – and so the cycle continues. 
 
 
Using this framework, the subsequent sections examine the human, interface, 
and program ends, particularly placing emphasis on the design options available 
at each, and their significance within the system. 
 
 

The Human End 

Learning processes 
 
Human sensory input occurs through sight, hearing, touch, taste, smell and 
vestibular mechanisms.  Most commonly the design of a computer interface is 
concerned with sight and hearing, with a small but steadily growing industry 
dedicated to haptic (touch) feedback.  Visual input results from the attention a 
user gives to the interface.  It is needed to guide actions (e.g. hand movements), 
to make decisions about actions, and most significantly in this case, to learn 
about the behaviour of an underlying model. 
 
A learning process can be defined as “cognitive transactions of the learner that 
are meant to transform information into knowledge” (Goodyear, Njoo, & Hijne, 
1991).  The definition is largely born out of an information-processing approach, 
which grew from theory that was a result of research within the field of Artificial 
Intelligence, where much endeavour centred around creating programs able to 
simulate human cognitive processes.  
 
The learning theory that is often applied to simulations is ‘discovery learning’.  
Described formally by Bruner (1961), interest in discovery learning became 
resurgent after the advent of personal computers in the early 1980’s.  This was 
largely as a result of the computer’s data processing power enabling educators to 
simulate aspects of an environment that were previously unreplicable, and also 
because of the increasing educational emphasis being placed on constructivist 
approaches (Jonassen, 1991).  Since then, several variants and elaborations of 
the basic theme have been proposed (Joolingen & Jong, 1997; Klahr & Dunbar, 
1988; Qin & Simon, 1990). 
 



In discovery learning, one of the ways in which learning can take place is when 
the subject reflects on the outcomes of their actions, makes inferences and 
verifies them with further action.  This is implicit within the notion of a simulation.  
De Jong & Njoo (1992) identify four features for the instructional use of 
simulations: the presence of formalised, manipulable underlying models, the 
presence of learning goals, the elicitation of specific learning processes, and the 
presence of learner activity.  The human end is concerned with the latter two. 
The learning processes described by those authors includes hypothesis 
generation, prediction and model exploration. 
 
It has been suggested  that there are two fundamental ‘problem spaces’ (Klahr & 
Dunbar, 1988) that are searched in the process of discovery learning, the 
‘hypothesis’ space and the ‘experiment space’.  The hypothesis space is 
essentially a bank of possible hypotheses relating to the problem, which the 
learner searches in order to explain what is observed.  It may be informed by 
prior knowledge and the outcomes of experimentation.  The ‘experiment space’ is 
a bank of possible experiments that may be conducted, and may or may not 
necessarily be guided by a relevant hypothesis.  The model proposed by the 
same authors is called ‘Scientific Discovery as Dual Search’ (SDDS), and 
features the key processes of searching the hypothesis space, testing the 
hypothesis and evaluating the evidence. 
 
In relation to computer simulations Reimann (1989) suggests an inductive model 
of learning featuring the following phases: 
 
� Testing and modifying the hypothesis; 
� Designing an experiment; 
� Making a prediction; 
� Evaluating the prediction; 
� Evaluating and/or modifying the hypothesis. 

 
It largely equates to the SDDS model, with the addition of a ‘prediction’ phase, 
seen as being distinct from the hypothesis.  However, the process is still 
considered to be an iterative one, whereby the underlying model is progressively 
discovered by the learner through sequential modification of an hypothesis.  
Ultimately, the goal of this discovery process is for the learner to establish a 
hypothesis, or set thereof, that accurately reflects the conceptual model being 
simulated. 
 
Discovery learning has at its core the notion of an iterative cycle, represented in 
the following diagram: 
 
 



 
 

Diagram 2: Discovery learning cycle 
 
 
If the environment permits, in the early part of exposure to an interactive system 
the subject undergoes an orientation, where familiarity is gained with controls, 
feedback areas and other relevant features of the interface.  After this initial 
period, the user may start to apply themselves to the particular task, 
progressively acquiring ‘domain’ knowledge in the process.  If the goal of arriving 
at a hypothesis/set aligned to the programmed model is to be achieved, the 
learner must progressively advance from a rudimentary understanding of the 
system to a refined notion of what it represents.  Subsequently, as domain 
knowledge builds and becomes more sophisticated, the learner engages in 
deeper reflective thought processes, which may be manifested in less frequent 
and more deliberate interactions. 
 
Considering the discovery cycle in the diagram above as being that of a ‘top 
down’ or aerial view of the process, viewing it from the ‘side’ shows how the 
series of iterations may be represented as a function of time. 
 
 

 
Diagram 3: Discovery iterations as a function of time 

 



 
The ‘spring’ is compressed during orientation, followed by the relative 
infrequency of iterations/coils during hypothesis refinement.  It is over-simplistic 
to suggest that this is a universal pattern of interaction, as differences in 
individual learning behaviour account for a diverse range of approaches.  Klahr 
and Dunbar (1988) suggest that users apply themselves as ‘experimenters’ or 
‘theorists’, signifying predominant activity within experiment or hypothesis spaces 
respectively.  ‘Experimenters’ would demonstrate a greater number of iterative 
cycles compared to ‘theorists’.  Orientation, also, may or may not be extensive, 
depending on how familiar the user is with the system, and how intuitive the 
interface appears to them.   
 
 

Information processing limitations 
 
Within an interactive simulation the flow of activity taking place during learning 
can be considered in terms of an information-processing model.  Classically, the 
approach categorizes memory into sensory, short-term, and long-term stores. 
Information enters initially via the senses (sensory memory) and then proceeds 
to short-term memory and subsequently, under certain conditions, to long-term 
memory (Atkinson & Schiffrin, 1968). 
  
Over the past fifty years researchers in the field of Artificial Intelligence (AI) have 
attempted to simulate aspects of human cognition using computer systems.  The 
models created are based on the ‘declarative’ and  ‘procedural’ knowledge 
dichotomies that are allied to similar distinctions in other theories of knowledge 
and learning. Piaget’s separation of ‘concepts’ and ‘schemes’ (Piaget, 1952), and 
Schema-theory’s ‘objects’ and ‘events’ (Gagne, 1985) are examples. 
 
Although popularly adopted as a model of cognition, some authors have argued 
that short-term and long-term memory are essentially part of a single memory 
system.  The ‘levels of processing’ framework (Craik & Lockhart, 1972) 
suggested that information is processed at different levels concurrently, 
depending on its particular characteristics, and deeper processing results in more 
information that can be remembered. These deeper levels require analysis of 
meaning, which could involve thinking of associations, images, and past 
experiences. 
 
Short-term memory, from the Atkinson-Schiffrin model, has two important 
limitations. Firstly, it can hold at any given time 7 (+/-) 2 "chunks" of information 
(Miller, 1956). Secondly, its holding ability is approximately 20 seconds.  Such 
limitations appear to be of limited relevance within the context of a simulation 
based on reasoning, where there is little need for the recall of strings of words or 
numbers.  Aspects of greater significance can be found in the contemporary 
cousin of short-term memory, ‘working memory’ (Baddeley, 1986). This is 



considered as a dynamic system, active in the execution of higher-level cognitive 
tasks such as learning and reasoning.  It does so by being a system for the 
temporary storage and manipulation of information via two types of components: 
a storage and a central executive. The storage system is considered to be 
passive, and mainly responsible for the transient storage of verbal and visual 
information, whilst the central executive, is regarded as being actively involved in 
encoding, storing, and retrieving information.  The concept of a central executive 
(Baddeley, 1990) was preceded by the comparable supervisory attentional 
system (Norman & Shallice, 1980), which also was seen as having limited 
capacity, and active in tasks involving decision making and problem solving.  
Demands on resources vary during the learning process; for example, the 
executive function is likely to require greater processing power when a subject is 
presented with a new task or environment, as compared to when they perform 
familiar routines. 
 
The notion of limited capacity is fundamental when designing activity flow as 
represented by the conveyor model.  If resources are limited and need to be 
shared by the demands of a storage and central executive, then it must bear 
consideration that a balance should exist between any new inputs and the time 
and resources needed to process them.  In a simulation, a prime mediator for 
establishing this balance is the interface. 
 
 

The Interface 
 
Keyboards, monitors, voice activation, and mouse devices are classically 
considered as the interface between man and machine.  In the Conveyor model, 
rather than focusing on hardware, the interface is viewed as the software 
intermediary between the human and the model. 
 
Graphical metaphors constitute the most common way to contextualize a 
simulation for the user, and are often used to implicitly convey a basic paradigm 
of operation.  Most simulations rely on visual representations to provide the 
setting, and display feedback and manipulation environments. 
 
Emphasis placed on the realism, or fidelity, of a simulation has resulted in 
increasingly rich graphical environments that aim to reproduce the look and 
behaviour of an alternate system (usually a real-world system).  The term ‘virtual 
reality’ conjures up the notion of being totally immersed in an artificial world, 
where the user moves and acts as they would in ‘real reality’.  Fidelity has been 
categorized as being physical and functional (Hays & Singer, 1989), where 
physical fidelity refers to how authentic the interface feels through manipulation 
and feedback, whilst functional fidelity is a measure of how faithfully the system 
being simulated is represented by the model. 
 



In simulations where skilled operation is a desired outcome, high levels of fidelity 
will result in the user being able to more readily transfer learned procedures to 
the real working environment.  High fidelity may also be an important factor in 
learner motivation, and in most cases, where the costs and technology permit, it 
is recommended as good design practice (Reigeluth & Schwartz).  However, as 
is discussed below, at times it may prove beneficial to sacrifice high physical 
fidelity for an interface that promotes planning and reflection. 
 

Manipulation 
 
Manipulation of an interface usually takes the form of operating sliders /dials 
/buttons (using keys or a mouse), or entering numbers and characters within 
specified fields.  The term ‘Direct manipulation’ was coined by Ben Shneiderman, 
and essentially features the following three criteria (Shneiderman, 1998): 
 
1. Continuous representation of the object of interest. 
2. Labeled button presses used instead of command line syntax.  
3. Operations whose impact on the object of interest is immediately visible. 
 
These guidelines, due to their obvious synergy to real life experience, became 
fundamental parameters in developing any graphical user interface.  Norman 
(1988) identified the ‘gulf of execution’ which refers to the distance, or difference, 
between one’s intentions to the actions that must be carried out in acting through 
the interface.  Bridging this gulf through direct manipulation has been established 
for several years as a fundamental tenet of good interface design, and it follows 
logically that the case should be no different when constructing an educative 
simulation.  
 
With this assumption in mind, and therefore somewhat counter-intuitively, 
findings of recent studies (Golightly, 1996; Schär, 1996; Svendsen, 1991) 
revealed some evidence to the contrary.  Results indicated significant 
improvements to problem solving performance when using less direct forms of 
manipulation, such as command line interfaces, or having to act on alternate 
representations of the object needing manipulation. 
 
Researchers attempted to explain these effects in a number of different ways. 
Svendsen (1991) proposed that the verbalization employed during the use of a 
command line interface resulted in subjects developing a deeper explicit 
knowledge of rules, therefore resulting in less moves taken to problem 
completion. Alternate explanations have suggested that increased 
‘implementation costs’ lead to a greater ‘planfulness’ during the problem-solving 
process (O'Hara & Payne, 1998).This means that from a perceptual-motor 
standpoint, the burden to the user of using a command line is significantly greater 



than the click of a mouse, and hence, to avoid the excessive execution of such 
operations, the user chooses to plan each move more carefully. This 
corresponds to the ‘rational analysis’ of ACT-R theory (Anderson, 1993), where it 
is proposed there exists a cognitive tradeoff between maximizing goals and 
minimizing implementation costs.  In another study (Fu & Gray, 2000) involving 
subjects placing blocks in particular pre-determined configurations, constrained 
by visual and memory cost factors, this tradeoff between memory costs and 
perceptual-motor costs, predicted by Anderson’s rational analysis, was again 
supported. 
 
Limiting the number of key presses or moves, as well as providing set goals for 
interactions have also shown to improve overall learning of an interface (Trudel & 
Payne, 1995). The studies indicate that if manipulation is unlimited and too easy 
to perform, the user will tend to operate without thinking enough about the 
process.  A similar condition may eventuate when learners fail to adequately 
establish goals for the interaction, and spend excessive amounts of time 
‘roaming’ the interface.  Although some exploration is essential for orientation 
within the environment to take place, aimless interaction beyond a certain point 
could lead to boredom, frustration and even abandonment of the system. 
 
Some studies (Rieber, Tzeng, Tribble, & Chu, 1996) have attempted to evaluate 
concept learning in a simulation within the context of dual-coding theory (Paivio, 
1991).  Interface design complementing the referential processing suggested by 
this theory was shown to significantly enhance the explicit understanding of the 
physical scientific principles under review.  Manipulation of the interface varied 
from visual representations of objects to numeric displays. 
 
Given the implications of these studies, the following items would be worthy 
focus points for discussion when designing interface manipulation: 
 

• Establishing a goal or set of goals for the interaction that will guide the 
manipulations of the user; 

• Allowing for a conversational interface (i.e. typing in words or commands) 
if verbalization could assist in concept learning; 

• Providing opportunity for orientation early in the user’s contact with the 
interface; 

• Imposing ‘costs’ or burdens on actions to stimulate reflection at key times. 
• Costs may include key press/ move limits, time constraints, manipulation 

of alternate representations of an object, or deliberately cumbersome 
procedures. 

 
It will become apparent, from the ensuing section, that none of these summary 
items can be detailed in isolation, since they are also integral to establishing the 
feedback parameters of a system. 
 



Feedback 
 
The feedback most commonly encountered in learning simulations is visual 
feedback, and can be categorized as synchronous or asynchronous.  
Synchronous feedback is ‘real-time’ in nature, and changes instantly, in 
synchrony, with user manipulations of the interface.  It is faithfully representative 
of our movement in the physical world, as our actions reveal immediate and 
visible consequences.  Asynchronous feedback, on the other hand, is feedback 
that is delayed or modulated in some way.  It is instituted by programmed time 
delays or additional operations that the user must perform to reveal the outcome 
of previous actions. 
 
As stated previously, direct manipulation requires as one of its conditions 
‘Operations whose impact on the object of interest is immediately visible’, whilst 
Norman’s (1988) second gulf, the ‘gulf of evaluation’, refers to the difficulty a user 
has in determining whether goals have been achieved. These have been well-
established guidelines for interface design for several years. 
 
Thus, at face value, the design decision for feedback in simulations appears to 
be quite straightforward: provide feedback that most closely resembles what 
happens in the system being simulated.  However, again, as with manipulation 
parameters, there is evidence to suggest that this does not necessarily produce 
optimal learning outcomes. 
 
Some research has demonstrated that synchronous feedback (sometimes 
termed continuous feedback) can result in the inducement of an implicit learning 
mode, whilst asynchronous feedback (similarly termed discontinuous feedback) 
may be optimal for the production of declarative knowledge (Schär, Schluep, 
Schierz, & Krueger, 2000). 
 
A skill-based simulation has the intention of promoting reflexive actions, 
experiential processes (Norman, 1993) or procedural skills through implicit 
learning (Reber, 1992). ‘Shoot-em-up’ arcade games are good examples.  
Synchronous feedback is desirable in such instances, where skills are mainly 
developed ‘unconsciously’ during the process of interaction.  This type of implicit 
learning is often illustrated by a person learning to ride a bicycle, where they 
respond reflexively, but cannot articulate explicitly what knowledge has been 
acquired. 
 
Concept-based simulations have an underlying model, informed by observed 
relationships, and defined by rules, conditions and actions, which need to be 
explored and uncovered by the learner. These types of simulations promote 
reflective processes (Norman, 1993), explicit learning (Reber & Squire, 1998) 
and the formation of declarative knowledge.  Asynchronous feedback can thus 
be effectively employed to create enforced delays, encouraging the learner to 
engage in the deeper thought processes demanded by the simulation.  



Modulation of feedback also decreases the concurrent information being 
processed by the user.  A learner fully focused on planning and executing a 
manipulation may be distracted by a continuous stream of feedback, especially if 
it is visually or audibly intrusive. Reducing the effects of this interference is 
another benefit of an asynchronous feedback loop. 
 
The application of asynchrony in feedback can be achieved in several ways. The 
user entering data into a field may be required to press ‘enter’.  In addition, there 
may be a time delay before the result is made evident.  Alternately, whilst 
dragging a slider control with the mouse, change in output would only be 
displayed upon reaching the ‘mouse-off’ state.  Another method could be to 
necessitate the use of a ‘show me’ button, which the user clicks on to find out the 
result of a previous series of manipulations. 
 
Studies, grounded in the framework of information-processing theory, have 
primarily sought to explore the effects of the nature and timing of feedback in 
computer-based instruction (CBI).  The type of feedback addressed in CBI 
studies ranges from that associated with discrete student responses to the more 
informative feedback used to enlighten the student on their progress towards a 
particular goal.  It is common to find reference to two forms of feedback (Kulhavy 
& Stock, 1989), ‘verification’, whether an answer is right or wrong, and 
‘elaboration’, the provision of guidance to the learner.  Similarly, Overbaugh 
(1994) described four such levels of feedback as lying on a continuum of 
usefulness for learning enhancement. 
 
Although superficially appearing to differ from the types of feedback present in 
simulations, there are several valuable parallels that can be drawn.  CBI research 
has shown that immediate feedback, which could be likened to synchronous 
feedback, may be more effective for lower-level knowledge acquisition (Gaynor, 
1981).  Conversely, delayed feedback, allied to asynchronous feedback, has 
proven more effective for the comprehension of higher level concepts (Jonassen 
& Hannum, 1987). 
 
In summary, for a concept-based simulation, options for the design of feedback 
should include: 
 

- Encouraging explicit learning modes by delaying feedback. 
- Designing delays by displaying the resultant of a manipulation only upon 

‘mouse-off’, by clicking a ‘show me’ button, or by time lapse. 
- Reducing interference by the spatial separation of visual feedback from 

manipulation areas, coupled with an unobtrusive representation of 
outputs. 

 
As was mentioned in concluding the preceding section, these options need to be 
closely considered in conjunction with the types of manipulation envisaged for 
the simulation. For example, if substantial ‘costs’ have been already imposed by 



instituting a command line interface, it may be counter productive to further 
create delays by the addition of a ‘show me’ button.  In many such instances it is 
possible to obtain the benefits of asynchrony and manipulation costs by the 
design of a single feature. 
 
 

The Program End 
 
Learning simulations have at their core a set of algorithms or models that reflect 
the operation of another system.  The distinction between these rules and the 
supporting software that they are programmed in needs to be clearly made. The 
model represents the fundamental conceptual basis of the interaction, whilst the 
software simply ‘houses’ or facilitates the process. 
 
A model is composed of variables and their mutual relationships, and it is the 
discernment of these variables and relations that is the heart of a concept-based 
simulation. 
 
In further developing SDDS, attempts were made (Joolingen & Jong, 1997) at 
describing the structure of the hypothesis and experiment space as well as the 
search within these spaces.  The hypothesis space was subdivided into spaces 
for ‘variables’ and ‘relations’, variables were ordered from general to specific 
within a hierarchical tree structure, and relations were similarly represented 
according to their level of precision.  The diagram below displays the structure. 
 
 
 

 
 

Diagram 4: Example of a relation hierarchy, adapted from (Joolingen & Jong, 1997) 
 
 
 



In searching the hypothesis space the learner first constructs a set of hypotheses 
by searching both the variable and relation spaces.  Subsequent search 
operations continue to be characterised by activity in both these spaces as well 
as those that alter the set itself.  The authors proceed to categorize each type of 
search operation in a classification that is representative of the various 
parameters of a hierarchical tree structure, for example, ‘abstraction of a 
hypothesis’ is seen as a relation space search operation, and is described as 
moving from a more to a less precise relation.  This equates to moving ‘up’ within 
the tree structure. 
 
The experiment space is seen as consisting of ‘value-tuples’, which are sets of 
variables with corresponding values assigned to them. These values may be 
numeric or qualitative in nature. In searching this space the learner first chooses 
the variable/s to be altered followed by the allocation of a value to them. 
 
It is self evident from the limited processing capacity available to a human during 
interaction that the number of variables and the complexity of their relationships 
constitute essential elements in the design of a model.  However, greater 
complexity of this nature does not automatically suggest greater ‘difficulty’ for a 
learner, as will be discussed when considering the inextricably linked notion of 
‘intention’. 
 

Intention 
 
The ‘Tower of Hanoi’, invented by the French mathematician Edouard Lucas in 
1883, is a popular puzzle task that requires users to transfer discs from the left 
(Peg 1) to the right (Peg 3). 
 
 
 

 
 

Diagram 5: The Tower of Hanoi Puzzle 
 
 
 
The rules simply state that only one disc can be moved at a time, and a larger 
disc may not be placed on a smaller one. 
 



Applied through the medium of a computer interface, the intention for which the 
puzzle is presented significantly determines the learning outcome for the user. 
For example, if rules are explicitly stated initially, and the user is simply asked to 
complete the puzzle, the learning outcome may be a rote memorization of 
sequence. If the rules are not disclosed (i.e. during the session an illegal move 
results in a beep, and the disc being returned to its original position), an 
additional learning outcome may be the discovery of the puzzle constraints. If the 
goal is to complete the puzzle in a minimum number of steps, a learning outcome 
may be the rote memorization of an ideal sequence derived through trial and 
error, or the formulation of an optimal algorithm. 
 
The intention of any task or interaction cannot be formulated in isolation of the 
developmental and situational contexts of the users.  Developmental issues 
include language and logic sophistication, especially when designing interactivity 
for young children.  Situational contexts refer to the association of domain-
specific knowledge to the problem, as well as to the setting and environment of 
the simulation.   
 
Using the example of Simcity (Maxis, 1989), the intent for novice users may just 
be a superficial appreciation of a growing city, whilst students of economics may 
be required to uncover relationships between unemployment and crime. 
 
Similarly, advanced computer programming students presented with the Tower-
of-Hanoi problem during a lesson on algorithm production would differ 
considerably from primary school children in terms of the scope and depth of 
understanding puzzle solution paths.  The intention may be for them to derive 
that the minimum number of steps needed to complete the puzzle equals 2n - 1, 
(where n is the number of discs present), whereas the child could simply be 
undertaking a recreational exercise in logic. 
 
Largely, task intentions can be categorized as those promoting model operation 
or model conceptualization, which equate to the previously discussed skill-based 
and concept-based simulations respectively.  It may be argued that in many 
instances model conceptualization is necessary for skilled model operation, and, 
less frequently, this could be conversely true.  Any single ‘learning simulation’ 
may contain multiple or combinations of task intentions. For example, the same 
flight simulator may be used for operational training (e.g. sequences for takeoff 
and landing, and associated skills), but may be also used for teaching theory 
(e.g. lift/drag ratio problems). The former has the intent of model operation, the 
latter model conceptualization. 
 
Learners will often attempt to achieve a particular end-goal during a simulation 
rather than theorizing about the model (Kuhn & Phelps, 1982).  For example, in a 
rocket fuel simulator, they may have a goal of sending the rocket into orbit 
without necessarily understanding the chemical relationships of the fuel mixture.  
This has been referred to as an ‘engineering approach’, in contrast to a ‘scientific 



approach’ where users systematically uncover model rules and relationships 
(Schauble, Glaser, Duschl, Schulze, & John, 1995).  Therefore, a learning 
simulation may utilize operational tasks to illustrate particular behaviours of the 
system, in conjunction with conceptual exercises that encourage hypothesis 
formation. 
 
The model operation/conceptualization dichotomy is summarized below in a table 
that generalizes for each; the cognitive processes involved, possible outcomes, 
and how these outcomes may be measured.  
 
 
 
Task intention: Cognitive 

processes: 
Outcomes/objectives: Measured 

by: 
Model operation Memory, 

visualization, 
sequence logic, 
planning 

Efficiency, productivity, recreation, skilled 
system operation by being able to carry 
out tasks in a particular system or 
environment. Proficiency in model 
operation. Knowing how the model works. 

Time, moves, 
effort 

Model 
conceptualization 

Prediction, rule 
induction, 
cognitive 
restructuring, 
insight 

Hypothesis formation, understanding of 
concept. Generalisation to other situations 
and contexts. Discovery of 
variable/relations behaviour. 
Understanding why the model works.  

Explanation 
and 
articulation of 
rules and 
concepts 

 
Table 1: Task intention summary 

 
 
 
In summary, some of the design issues, relevant to the program end, that require 
consideration include: 
 

- Definition of the model/s to be simulated by identifying variables and 
relations. 

- Balancing variable and relation complexity with task intention and the 
user’s developmental stage. 

- Considering situational contexts by providing sufficient support material 
prior to and during the interaction. 

- Creating a set of guided goals to facilitate progressive discernment of 
model properties. 

- Matching task intention to the desired outcomes. 
 
 
Evaluation of the learning outcomes of a simulation can indicate how further 
improvements may be made to subsequent versions.  With operational systems it 
is relatively easy to measure the time taken, or the number of moves performed 
by users in reaching a set goal.  However, to evaluate concept simulations, the 
designer would need to rely upon an accurate analysis of the interaction itself, or 
require users to attempt formal tests of their knowledge.  



 
 

Conclusions 
 
There is a need for further research aimed specifically at the effects of simulation 
interface design on concept learning.  Typically, research studies have employed 
well-defined problem solving tasks such as the ‘Tower of Hanoi’ or the ‘Eight-
puzzle’ to test the effects of adjusting interface features (Golightly, 1996; 
Svendsen, 1991).  Conclusions drawn suggest that success in the set activities 
was characterized by the extent to which learners reflected on their actions. 
 
It seems plausible then to extend this notion to the learning of concepts in a 
simulated environment.  However, there are fundamental differences between 
the attributes of a puzzle tasks such as the Tower of Hanoi and those of concept-
based simulations that could impact on this assumption.  Some significant 
disparities are summarized in Table 2. 
 
 
 

 
Puzzle tasks 

 

 
Concept simulations 

Puzzles have an obvious end goal or solved 
state that the user endeavours to reach. 

No end-goal may be present. Users may work 
with several goals to develop concepts. 

Rules of operation are usually understood prior 
to engagement. 

Rules are usually ‘uncovered’ by the user 
during interaction. 

Puzzle behaviour is not modelled on another 
system. 

Behaviour is based on a model that is an 
abstraction of a real-life system. 

After a move, no information about the model’s 
behaviour is discerned (unless rules are 
withheld). 

Manipulations result in new information 
becoming available to the user. 

A move results in a physical state that could 
have been predicted by the user prior to 
making the move (unless rules are withheld). 

The accuracy of user’s prediction will be 
representative of their understanding of the 
model’s behaviour.  

‘Thinking ahead’ several moves is possible, 
requiring the use of memory. 

It is not possible to plan several moves ahead, 
as each iteration provides new information. 

 
Table 2: Puzzle tasks vs. concept simulations 

 
 
 
Performance can be measured by fewer moves or the reduced time to complete 
certain tasks, and it has been shown that greater ‘planfulness’ results from 
imposing costs on interactions, leading to greater efficiency (O'Hara & Payne, 
1999).  What is yet unclear is how concept development, rule induction, or 
‘insight learning’ (cognitive restructuring) is affected by similar conditions. 
 



This article has deliberately not set out to review existing simulations and their 
common applications, or to develop yet another taxonomy based on a new set of 
criteria.  It has intended to identify key components within the framework of a 
conveyor model, significant research relating to each component, and relevant 
design issues thus arising. 
 
Blindly accepting the pedagogical applicability of the tenets of direct manipulation 
has been shown to be inadequate when making design choices aimed at 
maximizing learning outcomes.  No simple rule of thumb can be applied to give 
an optimal set of interaction parameters, if fact, a common suggestion throughout 
has been that any aspect of the Conveyor system cannot be addressed 
adequately when viewed in isolation.  This was highlighted when considering 
synchronous vs. asynchronous feedback at the level of interface manipulation, as 
subtle variations to manipulation design automatically and inherently alter the 
nature of feedback timing. 
 
Perhaps the most significant overarching concern binding all design facets 
together is that of educational context.  If task intention, and users’ situational 
and developmental stages are not clearly defined, the designer can be faced with 
creating a costly simulation that may ultimately prove to be of limited pedagogical 
value, and simply serve as yet another ornamental offering to the demands of 
‘technology in education’. 
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